Validation of univariate statistical models for predicting indoor temperature in simple envelopes

Authors

  • Alba Ramos Sanz Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

DOI:

https://doi.org/10.32870/rvcs.v0i18.298

Keywords:

empirical models, statistical models, buildings, inside temperature

Abstract

In the search for simple empirical techniques for estimating the interior temperature of areas enclosed in simple geometric envelopes, a descriptive, conclusive investigation is proposed, in which, through the use of statistical techniques, models for predicting interior temperature are validated. It is expected that the results will confirm the reliability of a simple model and avoid the use of more complex methods for estimating interior temperature, such as thermal-energy simulation tools. The feasibility of avoiding the use of simulation techniques, replacing them with records obtained with sensors that are then processed to obtain the univariate statistical model, would shed light on the use of simpler models. However, the conclusions indicate on the one hand important restrictions in the use of univariate statistical models for predicting interior temperature, but on the other hand they point out the potential use of these models only in some cases identified by a relevant thermal stability condition.

Metrics

Metrics Loading ...

References

Arquitectura y sostenibilidad (2024). Herramientas informáticas. Disponible en: http://arquitecturaysostenibilidad.com/profesionales/herramientas-informaticas/. Consultado: 19 de mayo de 2024.

Bastos, G.; del Valle, K.; Sánchez, A.; Fernández, C. (2021). Interoperability between Building Information Modelling (bim) and Building Energy Model (bem) Appl. Sci. 2021, 11(5), 2167. Disponible en: https://doi.org/10.3390/app11052167

Cozza, S.; Chambers, J.; Brambilla, A.; Patel, M. (2021). In Search of Optimal Consumption: A Review of Causes and Solutions to the Energy Performance Gap in Residential Buildings. Energy and Buildings 249 (2021)111253. Disponible

en: https://doi.org/10.1016/j.enbuild.2021.111253

Damasceno, B. (2020). Research on Cognition Disorders: Theoretical and Methodological Issues. Springer Nature.

Fernández, A; Garzón, B. (2024) Rehabilitación térmica de la envolvente de viviendas en altura. Un caso en Tucumán. Revista PENSUM 2024; 10: 147-162. https://doi.org/10.59047/2469.0724.v10.n12.41711

Flores Larsen; Filippìn, C.; Barea, G. (2018) Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina. Energy & Buildings 2018; 184: 216-229. https://doi.org/10.1016/j.enbuild.2018.12.015

García Ferrando, M. (1989) Socioestadística. Introducción a la estadística en sociologia. Alianza Editorial.

Ham, Y. y Golparvar-Fard, M. (2013). EPAR: Energy Performance Augmented Reality Models for Identification of Building Energy Performance Deviations between Actual Measurements and Simulation Results. Energy and Buildings, 63, 15-28. Disponible en : http://dx.doi.org/10.1016/j.enbuild.2013.02.054

Instituto Argentino de Normalización y Certificación (IRAM; 2019) Normas [en línea]. [Fecha de Consulta; 19/07/2019]. Disponible en http://www.iram.org.ar/

Instituto Argentino de Normalización y Certificación (IRAM; 1996) IRAM 11603:1996. Págs 1-45.

Instituto Argentino de Normalización y Certificación (IRAM; 1996) IRAM 11605:1996. Págs 1-27.

Instituto Argentino de Normalización y Certificación (IRAM; 2002) IRAM 11601:2002. Págs 1-48.

International Business Machines Corporation (IBM; 2024) IBM SPSS Statistics 25 [en línea]. [Fecha de Consulta; 31/05/2024]. Disponible en https://www.ibm.com/es-es/spss

International Energy Agency (IEA; 2019). IEA Building Energy Efficiency Policies Database [en línea]. [Fecha de Consulta; 10/05/2019]. Disponible en https://www.iea.org/statistics/

International Organization for Standarization (ISO; 2019) Standards. [en línea]. [Fecha de Consulta; 12/07/2019]. Disponible en https://www.iso.org/home.html

Li DHW; Yang L; Lam JC. (2013) Zero energy buildings sustainable development implications. A Review. Energy 2013; 54:1-10. https://doi.org/10.1016/j.energy.2013.01.070

Liu Z. et al (2019). Application and sustanability analysis of the technologies in nearly Zero Energy Buildings in China. Renew Sustain Energy Rev (2019); 101: 329-345. https://doi.org/10.1016/j.rser.2018.11.023

Mazzocco, M; Filippín, S; Sulaiman, H; Flores Larsen, S. (2018) Performance energética de una vivienda social en Argentina y su rehabilitación basada en simulación térmica. Ambiente Construido (2018); 4: 215-235. https://doi.org/10.1590/s1678-86212018000400302

Moore, D. (2000). Estadística aplicada básica. Editorial Antoni Bosch.

Nguyen, A.T., S. Reiter y P. Rigo (2014) A review on simulation-based optimization methods applied to building performance analysis. Applied Energy (2014);113 :1043 1058. https://doi.org/10.1016/j.apenergy.2013.08.061

Noris F et al (2014) Implications of weighting factors on technology preference in Net Zero Energy Buildings. Energy Build (2014); 82: 250-262. https://doi.org/10.1016/j.enbuild.2014.07.004

Oddi, F. y Garibaldi, L. (2024). Modelos lineales generales en R. Aplicaciones en ciencias agronómicas y ambientales. Editorial UNRN.

Organización de las Naciones Unidas (ONU; 2007) Buildings and Climate Change: Status, Challenges and Opportunities [en línea]. [Fecha de Consulta; 01/02/2019]. Disponible en https://www.un.org/es/

O’Rourke, N; Hatcher, L; Stepanski, E. (2005) A Step-by-Step Approach to Using SAS for Univariate & Multivariate Statistics. Editorial Wiley and Sons.

Pajek, L.; Kosir, M.; (2017) Can building energy performance be predicted by a bioclimatic potential analysis? Case study of the Alpine-Adriatic Region. Energy and Buildings (2017); 139: 160-173. https://doi.org/10.1016/j.enbuild.2017.01.035

Ramos Sanz, Alba (2017) Potencial de demanda energética cero en envolventes industriales. Revista Internacional Hábitat Sustentable (2017) págs. 41-49. https://doi.org/10.22320/07190700.2017.07.02.04

Ramos Sanz, Alba (2019) Transformación de la Construcción y la Arquitectura en los últimos 20 años: prospectivas y perspectivas. Análisis bibliométrico de los tópicos más desarrollados en revistas internacionales de alto impacto. Revista Arquitecturas del Sur (2019) págs.106-125. https://doi.org/10.22320/07196466.2019.37.055.07

Santos, R.; Costa, A. y Grilo, A. (2017). Bibliometric analysis and review of Building Information Modelling literature published between 2005 and 2015. Automation in Construction (2017); 80: 118-136. https://doi.org/10.1016/j.autcon.2017.03.005

Secretaría de Ambiente y Desarrollo Sustentable (2019). Manual de vivienda sustentable [en línea]. [Fecha de Consulta; 09/02/2019]. Disponible en https://www.argentina.gob.ar/ambiente/sustentabilidad/innovacion-para-el-desarrollo/vivienda

Schwartz, Y; Korolija, I; Symonds, P; Godoy-Shimizu, D; Dong, J; Hong, S; Mavrogianni, A; Grassie, D. y Mumovic, D. (2021) Indoor Air Quality and Overheating in UK Classrooms – anArchetype Stock Modelling Approach. Journal of Physics Conference Series (2021) 2069 (1) : 012175. https://doi.org/10.1088/1742-6596/2069/1/012175

Shady Attia et al (2017). Overview and future challenges of nearly Zero Energy Buildings (nZEB) design in Southern Europe. Energy and Buildings (2017) 155: 439-458. https://doi.org/10.1016/j.enbuild.2017.09.043

Szagri, D.; Dobszay, B.;Nagy, B.; Szalay, Z. WirelessTemperature, Relative Humidity andOccupancy Monitoring System for Investigating Overheating in Buildings. Sensors 2022, 22, 8638. https://doi.org/10.3390/s22228638

Wilson, A. y A. Templeman (1976) An approach to the optimum thermal design of office buildings. Building and Environment (1976); 11: 39-50. https://doi.org/10.1016/0360-1323(76)90018-4

Ramos Sanz, Alba (2015).

Published

2025-07-01

How to Cite

Ramos Sanz, A. (2025). Validation of univariate statistical models for predicting indoor temperature in simple envelopes. Vivienda Y Comunidades Sustentables, (18), 9–26. https://doi.org/10.32870/rvcs.v0i18.298